Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
2.
Atmos Environ (1994) ; 308: 119864, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2324584

RESUMEN

The COVID-19 pandemic promoted strict restrictions to human activities in China, which led to an unexpected increase in ozone (O3) regarding to nitrogen oxides (NOx) and volatile organic compounds (VOCs) co-abatement in urban China. However, providing a quantitative assessment of the photochemistry that leads to O3 increase is still challenging. Here, we evaluated changes in O3 arising from photochemical production with precursors (NOX and VOCS) in industrial regions in Shanghai during the COVID-19 lockdowns by using machine learning models and box models. The changes of air pollutants (O3, NOX, VOCs) during the COVID-19 lockdowns were analyzed by deweathering and detrending machine learning models with regard to meteorological and emission effects. After accounting for effects of meteorological variability, we find increase in O3 concentration (49.5%). Except for meteorological effects, model results of detrending the business-as-usual changes indicate much smaller reduction (-0.6%), highlighting the O3 increase attributable to complex photochemistry mechanism and the upward trends of O3 due to clear air policy in Shanghai. We then used box models to assess the photochemistry mechanism and identify key factors that control O3 production during lockdowns. It was found that empirical evidence for a link between efficient radical propagation and the optimized O3 production efficiency of NOX under the VOC-limited conditions. Simulations with box models also indicate that priority should be given to controlling industrial emissions and vehicle exhaust while the VOCs and NOX should be managed at a proper ratio in order to control O3 in winter. While lockdown is not a condition that could ever be continued indefinitely, findings of this study offer theoretical support for formulating refined O3 management in industrial regions in Shanghai, especially in winter.

3.
Atmospheric Environment ; : 119666.0, 2023.
Artículo en Inglés | ScienceDirect | ID: covidwho-2245650

RESUMEN

In March 2022, the resurgence of COVID-19 cases in Shenzhen, a megacity in the Pearl River Delta (PRD) region of China, led to unusual restrictions on anthropogenic activities within a single city, in contrast to the restrictions COVID-19 caused on a national scale at the beginning of 2020. In this unique event, we found that only under unfavorable meteorological conditions did substantial urban local emission reductions have an impact on air pollutant changes (−42.4%–6.6%), whereas the deweathered changes were very small (−8.3%–3.4%) under favorable meteorological conditions. Primary anthropogenic pollutants, such as NO2, toluene, BC, and primary organic aerosol (POA), responded most considerably to emission reductions from early morning to noon during unfavorable meteorological days;for secondary organic aerosol (SOA), regulating the daytime total oxidant (Ox = O3 + NO2) was found to be more effective than controlling its precursors within the city scale, whereas secondary nitrate displayed the opposite trend. Since Ox changed little during the urban lockdown despite the remarkable decrease in precursors, it is emphasized that regionally coordinated control of VOCs and NOx is necessary to effectively reduce Ox levels. In addition, Shenzhen's NOx emission reduction efforts should be sustained in order to control PM2.5 and O3 pollution synergistically for long-term attainment.

4.
PNAS Nexus ; 1(5): pgac266, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-2222715

RESUMEN

Surface ozone (O3) is an important secondary pollutant affecting climate change and air quality in the atmosphere. Observations during the COVID-19 lockdown in urban China show that the co-abatement of nitrogen oxides (NOx) and volatile organic compounds (VOCs) caused winter ground-level O3 increases, but the chemical mechanisms involved are unclear. Here we report field observations in the Shanghai lockdown that reveals increasing photochemical formation of O3 from VOC oxidation with decreasing NOx. Analyses of the VOC profiles and NO/NO2 indicate that the O3 increases by the NOx reduction counteracted the O3 decreases through the VOC emission reduction in the VOC-limited region, and this may have been the main mechanism for this net O3 increase. The mechanism may have involved accelerated OH-HO2-RO2 radical cycling. The NOx reductions for increasing O3 production could explain why O3 increased from 2014 to 2020 in response to NOx emission reduction even as VOC emissions have essentially remained unchanged. Model simulations suggest that aggressive VOC abatement, particularly for alkenes and aromatics, should help reverse the long-term O3 increase under current NOx abatement conditions.

5.
Environ Pollut ; 301: 119027, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1700515

RESUMEN

During the COVID-19 lockdown, atmospheric PM2.5 in the Pearl River Delta (PRD) showed the highest reduction in China, but the reasons, being a critical question for future air quality policy design, are not yet clear. In this study, we analyzed the relationships among gaseous precursors, secondary aerosols and atmospheric oxidation capacity in Shenzhen, a megacity in the PRD, during the lockdown period in 2020 and the same period in 2021. The comprehensive observational datasets showed large lockdown declines in all primary and secondary pollutants (including O3). We found that, however, the daytime concentrations of secondary aerosols during the lockdown period and normal period were rather similar when the corresponding odd oxygen (Ox≡O3+NO2, an indicator of photochemical processing avoiding the titration effect of O3 by freshly emitted NO) were at similar levels. Therefore, reduced Ox, rather than the large reduction in precursors, was a direct driver to achieve the decline in secondary aerosols. Moreover, Ox was also found to determine the spatial distribution of intercity PM2.5 levels in winter PRD. Thus, an effective strategy for winter PM2.5 mitigation should emphasize on control of winter O3 formation in the PRD and other regions with similar conditions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Ozono , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , Ozono/análisis , Material Particulado/análisis
7.
Se Pu ; 39(9): 950-957, 2021 Sep.
Artículo en Chino | MEDLINE | ID: covidwho-1417202

RESUMEN

Chromatography is an important branch of analytical chemistry that focuses on the separation and analysis of complex structures. Following more than 100 years of development and improvement, chromatography theory and technology have gradually become sophisticated. It has become a coalition of science, technology, and art. Recently, chromatography has been successfully used in combination with mass spectrometry, nuclear magnetic resonance spectroscopy, and atomic emission spectroscopy. Chromatography and the combination with other techniques has significantly improved the analysis of complex systems, such as the environment, food, petrochemicals, biological specimens, and medicine. As one of the oldest healing systems, Traditional Chinese Medicine (TCM) has served to maintain the health of people in China and worldwide for thousands of years. Therefore, it has become a core representative of traditional Chinese culture. In the past two years, TCM has been widely used to treat COVID-19, especially in patients with mild symptoms. Recently, Chinese government emphasized the inheritance and innovation of TCM and stepped up efforts to promote its modernization. TCM includes herbal medicine, acupuncture, moxibustion, massage, food therapy, and physical exercise, such as Tai Chi. In most cases, the patients are administered a mixture of TCM formulas containing more than two herbal medicines, resulting in a highly complicated compound mixture. There is no doubt that long-term clinical practices have demonstrated the safety and therapeutic effect of TCM. However, the compound mixture must be simplified to identify the active compounds. This is mainly because of the existence of carcinogenic compounds, pesticides, and heavy metal residues introduced through plantation and production processes. Moreover, enzymes within the human system generate further new compounds in response to the entry of the TCM containing thousands of components. Consequently, the complex TCM and organism systems interact with each other, constituting a giant complex drug-organism system. The analysis of this giant complex system is acknowledged as a key aspect in the modernization process of TCM. In the last 20 years, many studies have been conducted to screen and identify effective compounds in TCM. These effective compounds can be either the original compounds or new metabolic components generated in vivo. All these efforts are aimed at simplifying the components of TCM and elucidating the therapeutic mechanism. It is well known that chromatography can provide technical support for complex systems owing to its unique advantage of outstanding separation and analysis capabilities. Therefore, chromatography and its combination with other technologies have become mainstream technologies for promoting the compilation of molecular structure, information, digitalization, and modernization of TCM. This paper reviews the research and application of chromatography and combination technologies in a giant complex TCM formula-organism system. Furthermore, the authors briefly introduce and summarize the understanding, research ideas, and activities of the authors' team on the modernization of TCM. "Liang Guanxi" and "He strategy" are proposed as novel strategies for studying the giant complex drug-organism system. A distinguished technology integrated with mathematical model of causal relation, combined receptor chromatography, identification of chemical molecular structure and evaluating of pharmacological activities was established. It was successfully employed to determine the core effector-response substances of "Liang Guanxi" herb pairs in a giant complex drug-organism system. Subsequently, utilizing the proposed technology of Combination of Traditional Chinese Medicine Molecular Chemistry, the author's team designed and developed four series of innovative drugs. Inspired by the hundred years of chromatography history and thousands of years of TCM culture, the future development of chromatographic technology is expected. Furthermore, the mechanisms of TCM in medical healthcare, prevention, and treatment of diseases are likely be explained through chromatography, leading to a new strategy to realize the molecularization and digitalization of TCM, which is beneficial to the development of original new drugs.


Asunto(s)
Cromatografía , Medicina Tradicional China , Humanos
8.
Front Psychiatry ; 12: 653245, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1311388

RESUMEN

Objective: To investigate the prevalence of suicidal ideation among the first batch of students returning to a college during the COVID-19 epidemic, and to explore the correlation of suicidal ideation with family characteristics and social support. Methods: A cluster sampling survey with a self-designed questionnaire was conducted among the first batch of students returning to a college in Wuhu, China. The Positive and Negative Suicidal ideation (PANSI) and Social Support Scale (SSRS) were used to define students' suicidal ideation and social support, respectively. The influence of family characteristics and social support on the students' suicidal ideation was investigated using multivariate unconditional logistic regression analysis. Results: Two thousand seven hundred valid questionnaires were collected, including 673 males (24.9%) and 2,027 females (75.1%), in this study. A total of 146 students (5.4%) showed suicidal ideation. Male respondents reported higher rates (7.9%) than females (4.6%). Multivariate logistic regression analysis showed that a higher risk level of residence before returning to school and lower objective support were the risk factors for suicidal ideation in males. In contrast, a higher level of maternal education, a poorer relationship with the mother, and lower scores for subjective support and support availability had significant effects on females' suicidal ideation. Limitations: This is a cross-sectional study, and lacks comparison to the time point unaffected by COVID-19. Moreover, it was limited by COVID-19 epidemic prevention and control restrictions, and the differences in returning to school in different regions. Only one college was investigated in this study, and all of the respondents were sophomores, so there may be some limitations in the representativeness of the sample and extrapolation of the results. Conclusion: Family characteristics and social support have had an important influence on suicidal ideation among students returning to school during the COVID-19 epidemic. Some gender differences were identified. Targeted interventions are needed for early prevention and control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA